Paroxetine alleviates rat limb post-ischemia induced allodynia through GRK2 upregulation in superior cervical ganglia.

نویسندگان

  • Jun Tang
  • Jing Dong
  • Li Yang
  • Lingqi Gao
  • Jijian Zheng
چکیده

Long-lasting neuroplastic changes induced by transient decrease in G protein-coupled receptor kinase 2 (GRK2) in nociceptors enhances and prolongs inflammatory hyperalgesia. Here, we investigated the effects of paroxetine (a selective serotonin reuptake inhibitor and GRK2 inhibitor) on GRK2 expression in superior cervical ganglion (SCG) in a rat model of complex regional pain syndrome type I (CRPS-I). After ischemia-reperfusion (I/R) injury, the ipsilateral 50% paw withdrawal thresholds (PWTs) to mechanical stimuli and the expression levels of GRK2 protein and mRNA in the ipsilateral SCGs all decreased significantly; the ipsilateral cold allodynia scores increased significantly. No significant differences were found in the contralateral side except GRK2 mRNA reduced significantly at day 2-day 9 after I/R injury, but still higher than those in ipsilateral SCGs. After paroxetine administration, the ipsilateral 50% PWTs at day 2, 7, 14, and 21 were significantly higher than those in control group; The GRK2 protein and mRNA levels in ipsilateral SCGs were also significantly up-regulated after day1; The ipsilateral cold allodynia scores were significantly reduced after day7. No significant differences were found in the contralateral 50% PWTs, cold allodynia scores, and GRK2 protein level except GRK2 mRNA levels increased significantly at day1-day7 after paroxetine administration. Therefore, a transient decrease of GRK2 expression in SCG neurons might be involved in the development and maintenance of allodynia in CRPS-I and paroxetine might alleviate this allodynia through GRK2 protein upregulation in SCGs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neuroprotective Effect of Paroxetine on Memory Deficit Induced by Cerebral Ischemia after Transient Bilateral Occlusion of Common Carotid Arteries in Rat

Aims:Memory deficit is the most visible symptom of cerebral ischemia. The hippocampus is sensitive against cerebral ischemia. Oxidative stress and inflammation are involved in the pathological process after cerebral ischemic injury. Paroxetine has anti-oxidative and anti-inflammatory effects. In this study the effect of paroxetine on memory deficit after cerebral ischemia was investigated. Meth...

متن کامل

Neuroprotective Effect of Paroxetine on Memory Deficit Induced by Cerebral Ischemia after Transient Bilateral Occlusion of Common Carotid Arteries in Rat

Aims:Memory deficit is the most visible symptom of cerebral ischemia. The hippocampus is sensitive against cerebral ischemia. Oxidative stress and inflammation are involved in the pathological process after cerebral ischemic injury. Paroxetine has anti-oxidative and anti-inflammatory effects. In this study the effect of paroxetine on memory deficit after cerebral ischemia was investigated. Meth...

متن کامل

Paroxetine Attenuates the Development and Existing Pain in a Rat Model of Neurophatic Pain

Background: P2X4 receptor (P2X4R), a purinoceptor expressed in activated spinal microglia, plays a key role in the pathogenesis of neuropathic pain. Spinal nerve injury induces up-regulation of P2X4R on activated microglia in the spinal cord, and blockade of this receptor can reduce neuropathic pain. The present study was undertaken to determine whether paroxetine, an inhibitor of P2X4R, could ...

متن کامل

Paroxetine alleviates T lymphocyte activation and infiltration to joints of collagen-induced arthritis

T cell infiltration to synovial tissue is an early pathogenic mechanism of rheumatoid arthritis (RA). In the present work, we reveal that G protein coupled receptor kinase 2 (GRK2) is abundantly expressed in T cells of collagen-induced arthritis (CIA). A GRK2 inhibitor, paroxetine protects the joints from inflammation and destruction, primarily through inhibition of both CD4+ helper T (Th) cell...

متن کامل

IL-1 beta signaling is required for mechanical allodynia induced by nerve injury and for the ensuing reduction in spinal cord neuronal GRK2.

Many neurotransmitters involved in pain perception transmit signals via G protein-coupled receptors (GPCRs). GPCR kinase 2 (GRK2) regulates agonist-induced desensitization and signaling of multiple GPCRs and interacts with downstream molecules with consequences for signaling. In general, low GRK2 levels are associated with increased responses to agonist stimulation of GPCRs. Recently, we report...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • International journal of clinical and experimental medicine

دوره 8 2  شماره 

صفحات  -

تاریخ انتشار 2015